HISTORIA

        Aunque el aprovechamiento de al energía eólica data de las épocas más remotas de la humanidad (los egipcios ya navegaban a vela en el año 4.500 a. c.) la primera noticia que se tiene se refiere a un molino que Heron de Alejandría construyó en el siglo II a. c. para proporcionar aire a su órgano. Los molinos más antiguos que se conocen eran de eje vertical.

        Hacia el siglo VIII aparecieron en Europa, procedentes del este, grandes molinos de eje horizontal con cuatro aspas. Su fabricación en gran número, en particular por los holandeses, les hizo alcanzar una gran firmeza, pese a que, debido a las dimensiones de sus aspas distaban mucho de recoger en máximo de potencia. Necesitaban una regulación de la orientación de la tela. Siempre sucede esto en los molinos de viento de eje horizontal que han de trabajar siempre frente al viento. Estos molinos eran muy adecuados para vientos del orden de 5 m/s (20 Km/h).

       Es a partir de los siglos XII-XIII cuando empieza a generalizarse el uso de los molinos de viento para la elevación de agua y la molienda de grano, los más antiguos aparecieron en Turquía, en Irán y en Afganistán A principios del siglo XII. Europa se llenó a su vez de molinos, sobre todo en Bélgica y en los Países Bajos. Los molinos de Holanda tienen 4 aspas de lona, mientras que los de Baleares y Portugal tienen 6, y los de Grecia, 12. Los molinos con gran número de palas determinan velocidades de rotación relativamente bajas y un funcionamiento útil a partir de velocidades del viento del orden de 2 m/s.

       Todos estos molinos se mantendrán hasta bien entrado el siglo XIX. El desarrollo de los molinos de viento se interrumpe con la revolución industrial y la utilización masiva de vapor, la electricidad y los combustibles fósiles como fuentes de energía motriz. Es sin embargo en la segunda mitad del siglo XIX cuando tiene lugar uno de los más importantes avances en la tecnología del aprovechamiento del viento, con la aparición del popular "modelo multipala americano", utilizado para bombeo de agua prácticamente en todo el mundo, y cuyas características habrían de sentar las bases para el diseño de los modernos generadores eólicos.

        Fue entre las guerras mundiales cuando aparecieron, como consecuencia de los progresos técnicos de las hélices de aviación, y con ellas los proyectos de grandes aerogeneradores de dos o tres palas. Se tendió a construir casi únicamente los de dos, ya que resultan mas baratos. Incluso se pensó en utilizar una única pala equilibrada con un contrapeso. Actualmente predominan los molinos tripalas. Estos aerogeneradores giran más rápidamente que los multipalas, lo que constituye una ventaja cuando se trata de alimentar máquinas de gran velocidad de rotación como los alternadores eléctricos. Los grandes aerogeneradores están situados en lo alto de una torre tronco-cónica de acero.

        Los aerogeneradores de eje vertical tienen la ventaja de adaptarse a cualquier dirección del viento. Por ello se los llama panémonos (todos los vientos). No precisan dispositivos de orientación. En su forma mas moderna derivan todos ellos del inventado den 1925 por el ingeniero Francés Darrieus, patentado en Estados Unidos y luego caído en un olvido casi total. Su estudio volvió a iniciarse en Canadá en 1973 y en Estados Unidos a partir de 1975. Las máquinas pequeñas, de 1 a 60 kW, pueden construirse a un precio inferior al de los molinos de viento clásicos de eje horizontal. En EEUU, los laboratorios Sandia en Alburquerque, Nuevo México estudian y comercializan los molinos de viento Darrieus.

        El primer aerogenerador fue construido en Francia, en 1929, pero se rompió a causa de una violenta tormenta. La compañía electromecánica construyó e instaló en Bourget un aerogenerador de dos palas de 20 metros de diámetro. El aparato fue destruido por las ráfagas de viento.

        En Rusia se puso en funcionamiento en 1931, en Crimea, frente al mar muerto, un aerogenerador de 30 metros, que tenía que proporcionar 100 kW a la red de Sebastopol, la media durante dos años fue de 32 kW.

        En 1941 los estadounidenses y mas concretamente la NASA construyó un bipala de 53 m de diámetro, previsto para una potencia máxima de 1.250 kW que se instaló en Vermont, en el nordeste de EEUU. Las primeras pruebas, iniciadas en octubre de 1941 continuaron durante unos 15 meses. Un pequeño incidente en 1943 bloqueó la máquina durante dos años, ya que las dificultades ligadas a la guerra retrasaron la fabricación de piezas nuevas. Vuelto a poner en marcha, el aerogenerador proporcionó corriente al sector durante veintitrés días, luego se rompió una de las palas y se abandonó el proyecto.

        En 1975 se pusieron en servicio los aerogeneradores Mod. 0 con unas palas de metal con un diámetro de 38 metros, produciendo 100 kW. En 1977 se construyó el Mod. 0A que tenía 200 kW. La GENERAL ELECTRIC termina el bipala Mod. 1 en 1978 que con un diámetro de 60 metros acciona un alternador de 2 MW. Mientras la BOEING estudia el Mod. 2, ideal para los vientos medios de las grandes llanuras, que con 91 metros de diámetro produce 2,5 MW, con palas de acero.

        En Francia, un vasto programa patrocinado por la Electricité de France, ha realizado un estudio del viento en todas las regiones y ha construido varios grandes aerogeneradores experimentales. El aerogenerador "Best, Romani" tripala de 30 m de diámetro con chapas de aleación ligera fue instalado en Nogent-le-Roy en Beauce. Podía proporcionar 800 kW a la red con un viento de 60 Km/h. Esta máquina experimental aportó entre 1958 y 1962 un gran número de informaciones sobre su funcionamiento en condiciones reales de explotación. La compañía Neyrpic instaló en Saint-Rémy-des-Landes (Manche) dos aerogeneradores de tres palas. El primero de 21 metros de diámetro y que producía 130 kW de potencia, funcionó hasta marzo de 1966. El otro, de 35 metros y previsto para producir 1.000 kW, proporcionó una potencia satisfactoria durante las pruebas, pero a la ruptura de un palier en 1964 hizo que se abandonase el programa de estudios.

        En Alemania se construyó entre 1955 y 1957 un aerogenerador de dos palas de 34 metros de diámetro, de fibra de vidrio, a 80 Km. al este de Stuttgart. Esta máquina funcionó hasta 1968. Dinamarca construyó en 1957 el "Gedser Mill", hélice de tres palas de 24 metros de diámetro que funcionó hasta 1968. Producía 200 kW con una velocidad del viento en el eje de la máquina de 15 m/s.

        El bajo precio del petróleo determinó entonces la suspensión total de los grandes proyectos en todo el mundo. Pero en los años 70, coincidiendo con la primera crisis del petróleo, se inicia una nueva etapa en el aprovechamiento de la energía del viento. Las aplicaciones de las modernas tecnologías, y en especial de las desarrolladas para la aviación, ha dado como resultado la aparición de una nueva generación de máquinas eólicas muy perfeccionadas, y que permiten su explotación, bajo criterios de rentabilidad económica, en zonas de potencial eólico elevado.

        A principios de los años 70, los norteamericanos, enfrentados al aumento de los problemas de abastecimiento de energía iniciaron un amplio programa para explotar la energía eólica. En aquel momento se estimaba, en efecto, que esta energía renovable podría, aparte de sus aplicaciones tradicionales, proporcionar kW/h a las redes eléctricas a un precio igual o inferior al de las centrales térmicas. Ello sería pronto una realidad con la puesta en servicio, de grandes aerogeneradores que producirán potencias eléctricas comprendidas entre 2 y 5 MW. EEUU cuenta con numerosos proyectos para la utilización de la energía del viento, incluso en combinación con otras centrales como las hidroeléctricas. También ha mostrado un gran interés en promocionar los aerogeneradores entre el público para que no los rechace y entre los posibles interesados (fabricantes y usuarios).

       Algunos de estos molinos alcanzaban dimensiones colosales para aquella época: sus hélices, con un diámetro de varias decenas de metros, están sostenidas por grandes postes. Casi todas las grandes eólicas fueron destruidas del mismo modo tras algunos años de servicio. Es el caso, por ejemplo, de la gran hélice de 31 metros instalada en 1958 en Nogent-le-Roi, un pueblo de Normandía, al oeste de Francia, destruido por una tormenta en 1963. Montado sobre un trípode metálico, tenía tres palas, situada a 35 metros por encima del suelo y capaz de girar a 47 r.p.m. Ponía en movimiento un generador eléctrico conectado a la red urbana, o de otra mas modesta (18 m.) construida en una isla de Gran Bretaña en 1979: sólo funcionó durante 9 meses.

       Los primeros grandes aerogeneradores se encuentran en los Estados Unidos, donde en 1941 había ya una eólica cuya hélice pesaba 7 toneladas y tenía un diámetro de 53 metros. También ésta se rompería durante una tormenta. Desde 1973, y bajo la responsabilidad de la NASA los Estados Unidos han reanudado la construcción de eólicas gigantes. Las dos mas grandes miden 61 y 91 metros de diámetro y funcionan desde 1978 en Boone (Ohio) y en Barstow (California). Producen de 2.000 a 2.500 kW de electricidad.

       El florecimiento californiano de la energía eólica se debió en gran parte a una política fiscal favorable y a los altos precios que pagaban las eléctricas por la energía de origen eólico a mediados de los años 1980. Ambos incentivos se han suprimido, pero la energía de origen eólico continúa creciendo en California, si bien a un ritmo más lento. Los parques eólicos de Altamont eran, se decía con malicia, refugio contra los impuestos. La verdad es que los primeros años fueron difíciles. Los incentivos fiscales estimularon la rápida construcción de aerogeneradores cuyo diseño no se había sometido a pruebas rigurosas, y las averías menudeaban. Hoy, resueltos la mayoría de los problemas, la economía de la generación eólica ha mejorado notablemente. Desde 1981, el coste de la energía eléctrica generada por fuerza eólica ha caído en casi un orden de magnitud. De las reducciones en coste, pocas son atribuibles a innovaciones técnicas. Salvo las paletas de material compuesto ligero y las turbinas controladas por microprocesador, los aerogeneradores comerciales de Altamont no incorporan novedades substanciales, aerodinámicas o de proyecto, respecto a los que se construyeron hace 50 años. La reducción de costos de la energía eólica obedece, sobre todo, a la experiencia de los años, que lleva consigo la introducción de métodos normalizados. En las industrias, los fabricantes se aplicaron a las técnicas de producción en masa; en el campo, los especialistas aprendieron a escoger los emplazamientos mejores y a acomodar el calendario de mantenimiento a los períodos de viento flojo. Las nuevas turbinas eólicas, de técnica más depurada, prometen ulteriores ahorros. PG&E está inmersa en un proyecto de cinco anos de duración en cooperación con el Instituto de Investigación de Energía Eléctrica (IIEE, O EPRI), de Palo Alto, y U. S. Windpower, de Livermore, ambos en California, para desarrollar, construir y probar prototipos de una turbina eólica de 300 kW y de velocidad variable.